Spintronics and the limitations of every day electronics

In today’s society electronic devices are heavily incorporated in everyone’s daily life. The everlasting desire to make our computers run faster, necessarily leads to smaller and smaller electric components. Where in the early 70s a single computer chip could host up to a few thousands of transistors, today the number approaches tens to hundreds of billions and soon will reach a fundamental limit ( Citation: , (). The McClean Report. https://www.icinsights.com/reports/mcclean-report/. ).

At the heart of electronic devices are electronic circuits that control the charge of electrons. Besides charge, electrons however possess two spin states that can be named “up” and “down”, a degree of freedom that can be utilized in both data storage and processing. The giant magneto-resistance effect ( Citation: & al., , , & (). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39(7). 4828–4830. https://doi.org/10.1103/physrevb.39.4828 ; Citation: & al., , , , , , , , & (). Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61(21). 2472–2475. https://doi.org/10.1103/physrevlett.61.2472 ) for example has made a tremendous impact on data storage technologies ( Citation: & al., , , & (). Spintronic devices for energy-efficient data storage and energy harvesting. Comms. Mater., 1(1). 1–9. https://doi.org/10.1038/s43246-020-0022-5 ).

Unfortunately these improvements in computer chips and data storage has led to an increase in energy consumption. Predictions say the total electricity demand of information and communication technology will be 20.9% of the total world’s electricity demand ( Citation: , (). How to stop data centres from gobbling up the world’s electricity. Nature, 561(7722). 163–166. https://doi.org/10.1038/d41586-018-06610-y ) by 2030.

Spin-based electronics or “spintronics” as it is often referred to, has become an active field of research. Compared with charge-based devices, spin-based devices could in principle have higher density, lower energy cost, and faster operating speed ( Citation: , (). Charge-spin conversion in 2D systems. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 125–136). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00004-7 ; Citation: & al., , & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1 ; Citation: & al., , & (). Recent advances in novel materials for future spintronics (). MDPI. https://doi.org/10.3390/books978-3-03897-977-7 ). Despite active research, many open questions remain about the electron spin dynamics. These include among others understanding the effects of spin-orbit coupling, spin-valley coupling, and spin-photon interaction ( Citation: & al., , & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1 ; Citation: & al., , , , , , , , , , , , , , , , , , , , , , , , , , & (). Interface-induced phenomena in magnetism. Rev. Mod. Phys., 89(2). 025006. https://doi.org/10.1103/revmodphys.89.025006 ).

Spintronics in ferro- and antiferromagnets

Ferromagnetic spintronics has greatly contributed to microelectronic technology in the last few decades ( Citation: & al., & (). Spintronics. Annu. Rev. Condens. Matter Phys., 1(1). 71–88. https://doi.org/10.1146/annurev-conmatphys-070909-104123 ; Citation: & al., & (). New moves of the spintronics tango. Nat. Mater., 11(5). 368–371. https://doi.org/10.1038/nmat3304 ; Citation: & al., , , , , & (). Spintronics based random access memory: A review. Mater. Today, 20(9). 530–548. https://doi.org/10.1016/j.mattod.2017.07.007 ). One of the practical results was the development of magnetic memories with purely electronic write-in and read-out processes as an alternative to existing solid state drive technologies ( Citation: & al., & (). A new spin on magnetic memories. Nat. Nanotechnol., 10(3). 187–191. https://doi.org/10.1038/nnano.2015.24 ; Citation: & al., , , , & (). Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron., 1(9). 508–511. https://doi.org/10.1038/s41928-018-0131-z ).

Ferromagnetic thin films have already entered commercial use in hard drives, magnetic field and rotation angle sensors and in similar devices ( Citation: & al., , , , , & (). Magnetically engineered spintronic sensors and memory. Proc. IEEE, 91(5). 661–680. https://doi.org/10.1109/jproc.2003.811807 ; Citation: & al., , , , , , , & (). Recent developments of magnetoresistive sensors for industrial applications. Sensors, 15(11). 28665–28689. https://doi.org/10.3390/s151128665 ; Citation: & al., , , & (). Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 14(5). 408–419. https://doi.org/10.1038/s41565-019-0438-6 ), while keeping high promises for technologically competitive ultrafast memory elements ( Citation: & al., , , , & (). Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol., 11(9). 758–762. https://doi.org/10.1038/nnano.2016.84 ) and neuromorphic chips ( Citation: & al., , , , & (). Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater., 15(5). 535–541. https://doi.org/10.1038/nmat4566 ).

It is widely known that spin-orbit interaction provides an efficient way to couple electronic and magnetic degrees of freedom. It is, therefore, no wonder that the largest torque on magnetization, which is also referred to as the spin-orbit torque, emerges in magnetic systems with strong spin-orbit interaction ( Citation: & al., , , , , , , & (). Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer. Nat. Mater., 9(3). 230–234. https://doi.org/10.1038/nmat2613 ; Citation: & al., , , , & (). Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys. Rev. B, 87(17). 174411. https://doi.org/10.1103/physrevb.87.174411 ) as has been long anticipated ( Citation: & al., & (). Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A, 35(6). 459–460. https://doi.org/10.1016/0375-9601(71)90196-4 ).

The spin-orbit coupling may be enhanced by confinement potentials in effectively two-dimensional systems consisting of conducting and magnetic layers. The in-plane current may efficiently drive domain walls or switch magnetic orientation in such structures with the help of spin-orbit torque ( Citation: & al., & (). Spintronics without magnetism. Physics, 2. 50. https://doi.org/10.1103/physics.2.50 ; Citation: & al., & (). Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B, 78(21). 212405. https://doi.org/10.1103/physrevb.78.212405 ; Citation: & al., & (). Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B, 80(13). 134403. https://doi.org/10.1103/physrevb.80.134403 ; Citation: & al., & (). Theory of spin torque due to spin-orbit coupling. Phys. Rev. B, 79(9). 094422. https://doi.org/10.1103/physrevb.79.094422 ), which is present even for uniform magnetization, or with the help of spin-transfer torque, which requires the presence of magnetization gradient (due to e.g. domain wall) ( Citation: , (). Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater., 159(1-2). L1–L7. https://doi.org/10.1016/0304-8853(96)00062-5 ; Citation: , (). Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54(13). 9353–9358. https://doi.org/10.1103/physrevb.54.9353 ; Citation: & al., & (). Spin transfer torques. J. Magn. Magn. Mater., 320(7). 1190–1216. https://doi.org/10.1016/j.jmmm.2007.12.019 ; Citation: & al., & (). Anatomy of spin-transfer torque. Phys. Rev. B, 66(1). 014407. https://doi.org/10.1103/physrevb.66.014407 ).

On the other hand, antiferromagnets have received a great deal of attention due to their high temperature magnetic order in a large variety of materials. The study of antiferromagnets have uncovered many interesting properties. For example, the antiferromagnet has zero magnetic moment, is insensitive to external fields and contains no internal stray fields. Furthermore, ultrafast switching of the antiferromagnetic order has been observed ( Citation: & al., , & (). High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett., 117(1). 017202. https://doi.org/10.1103/physrevlett.117.017202 ; Citation: & al., , , , , , , , , , , , , , & (). Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv., 4(3). eaar3566. https://doi.org/10.1126/sciadv.aar3566 ; Citation: & al., , , , , & (). The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14(3). 200–203. https://doi.org/10.1038/s41567-018-0063-6 ; Citation: & al., & (). Antiferromagnetic metal spintronics. Proc. R. Soc. A, 369(1948). 3098–3114. https://doi.org/10.1098/rsta.2011.0014 ; Citation: & al., & (). Spintronics of antiferromagnetic systems (Review article). Low Temp. Phys., 40(1). 17–35. https://doi.org/10.1063/1.4862467 ; Citation: & al., , , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201 ). In spintronic devices these properties translate to storing magnetic data at high densities, fast reading and writing, and, in addition to low energy consumption, make the antiferromagnet an ideal candidate for further study.

An increasing demand for ever higher performance computation and ever faster big data analytics has therefore sparked the interest to antiferromagnetic spintronics ( Citation: & al., & (). Antiferromagnetic metal spintronics. Proc. R. Soc. A, 369(1948). 3098–3114. https://doi.org/10.1098/rsta.2011.0014 ; Citation: & al., & (). Spintronics of antiferromagnetic systems (Review article). Low Temp. Phys., 40(1). 17–35. https://doi.org/10.1063/1.4862467 ; Citation: & al., , , , , , , , , , , , , , , , , , , , , & (). Electrical switching of an antiferromagnet. Science, 351(6273). 587–590. https://doi.org/10.1126/science.aab1031 ; Citation: & al., , , & (). Antiferromagnetic spintronics. Nat. Nanotechnol., 11(3). 231–241. https://doi.org/10.1038/nnano.2016.18 ; Citation: & al., , , , , & (). Antiferromagnetic spintronics. Rev. Mod. Phys., 90(1). 015005. https://doi.org/10.1103/revmodphys.90.015005 ; Citation: & al., , , , , & (). The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14(3). 200–203. https://doi.org/10.1038/s41567-018-0063-6 ; Citation: & al., , & (). Perspectives of antiferromagnetic spintronics. Phys. Lett. A, 382(13). 865–871. https://doi.org/10.1016/j.physleta.2018.01.008 ), i.e. to the usage of the much more subtle antiferromagnetic order parameter to store and process information. This idea is driven primarily by the expectation that antiferromagnetic materials may naturally allow for up to THz operation frequencies ( Citation: & al., , & (). High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett., 117(1). 017202. https://doi.org/10.1103/physrevlett.117.017202 ; Citation: & al., , , , , , , , , , , , , , & (). Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv., 4(3). eaar3566. https://doi.org/10.1126/sciadv.aar3566 ; Citation: & al., , , , , & (). The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14(3). 200–203. https://doi.org/10.1038/s41567-018-0063-6 ; Citation: & al., & (). Antiferromagnetic metal spintronics. Proc. R. Soc. A, 369(1948). 3098–3114. https://doi.org/10.1098/rsta.2011.0014 ; Citation: & al., & (). Spintronics of antiferromagnetic systems (Review article). Low Temp. Phys., 40(1). 17–35. https://doi.org/10.1063/1.4862467 ; Citation: & al., , , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201 ) in sharp contrast to ferromagnets whose current-induced magnetization dynamics is fundamentally limited to GHz frequency range.

Recently, spin-orbit-torque-driven electric switching of the Néel vector orientation has been predicted ( Citation: & al., , , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201 ) and discovered in non-centrosymmetric crystals such as CuMnAs ( Citation: & al., , , , , , , , , , , , , , , , , , , , , & (). Electrical switching of an antiferromagnet. Science, 351(6273). 587–590. https://doi.org/10.1126/science.aab1031 ; Citation: & al., & (). Electric control of antiferromagnets. IEEE Trans. Magn., 53(2). 1–1. https://doi.org/10.1109/tmag.2016.2606561 ; Citation: & al., , , , & (). Spin transport and spin torque in antiferromagnetic devices. Nat. Phys., 14(3). 220–228. https://doi.org/10.1038/s41567-018-0062-7 ; Citation: & al., , , , , , , , , , , , , , & (). Optical determination of the néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon., 11(2). 91–96. https://doi.org/10.1038/nphoton.2016.255 ) and Mn$_2$Au ( Citation: & al., , , , & (). Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun., 4(1). 1–7. https://doi.org/10.1038/ncomms3892 ; Citation: & al., , , , , & (). Epitaxial Mn2Au thin films for antiferromagnetic spintronics. J. Phys. D: Appl. Phys., 48(38). 385001. https://doi.org/10.1088/0022-3727/48/38/385001 ; Citation: & al., , , , , , , , , , , , , & (). Néel spin-orbit torque driven antiferromagnetic resonance in Mn2Au probed by time-domain THz spectroscopy. Phys. Rev. Lett., 120(23). 237201. https://doi.org/10.1103/physrevlett.120.237201 ). Even though many antiferromagnetic compounds are electric insulators ( Citation: & al., , & (). Doping an antiferromagnetic insulator: A route to an antiferromagnetic metallic phase. EPL, 117(5). 57003. https://doi.org/10.1209/0295-5075/117/57003 ), which limits the range of their potential applications, e.g., for spin injection ( Citation: & al., , , , , , , & (). Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B, 92(21). 214406. https://doi.org/10.1103/physrevb.92.214406 ), the materials like CuMnAs and Mn$_2$Au possess semi-metal and metal properties, inheriting strong spin-orbit coupling and sufficiently high conductivity. These materials also give rise to collective mode excitations in THz range ( Citation: & al., , , , , , , , , , , , , & (). Néel spin-orbit torque driven antiferromagnetic resonance in Mn2Au probed by time-domain THz spectroscopy. Phys. Rev. Lett., 120(23). 237201. https://doi.org/10.1103/physrevlett.120.237201 ).

Despite a lack of clarity concerning the microscopic mechanisms of the Néel vector switching, these experiments have been widely regarded as a breakthrough in the emerging field of THz spintronics ( Citation: & al., , , , , , , , , , , , , & (). Néel spin-orbit torque driven antiferromagnetic resonance in Mn2Au probed by time-domain THz spectroscopy. Phys. Rev. Lett., 120(23). 237201. https://doi.org/10.1103/physrevlett.120.237201 ; Citation: & al., , & (). High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett., 117(1). 017202. https://doi.org/10.1103/physrevlett.117.017202 ; Citation: & al., , , , , , , , , , , , , , & (). Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv., 4(3). eaar3566. https://doi.org/10.1126/sciadv.aar3566 ; Citation: & al., , , , , & (). The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14(3). 200–203. https://doi.org/10.1038/s41567-018-0063-6 ; Citation: & al., , , , , , , , , , , , , , , , , , , , , & (). Electrical switching of an antiferromagnet. Science, 351(6273). 587–590. https://doi.org/10.1126/science.aab1031 ; Citation: & al., , , & (). Antiferromagnetic spintronics. Nat. Nanotechnol., 11(3). 231–241. https://doi.org/10.1038/nnano.2016.18 ; Citation: & al., , , , , & (). Antiferromagnetic spintronics. Rev. Mod. Phys., 90(1). 015005. https://doi.org/10.1103/revmodphys.90.015005 ; Citation: & al., , & (). Perspectives of antiferromagnetic spintronics. Phys. Lett. A, 382(13). 865–871. https://doi.org/10.1016/j.physleta.2018.01.008 ). It has been suggested that current-induced Néel vector dynamics in an AFM is driven primarily by the so-called Néel spin-orbit torques ( Citation: & al., , & (). Current-induced torques in magnetic materials. Nat. Mater., 11(5). 372–381. https://doi.org/10.1038/nmat3311 ; Citation: & al., & (). Phenomenology of current-induced spin-orbit torques. Phys. Rev. B, 88(8, 8). 085423. https://doi.org/10.1103/physrevb.88.085423 ; Citation: & al., , , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201 ; Citation: & al., , & (). Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B, 90(17). 174423. https://doi.org/10.1103/physrevb.90.174423 ; Citation: & al., & (). Spin-orbit torque in two-dimensional antiferromagnetic topological insulators. Phys. Rev. B, 95(3). 035422. https://doi.org/10.1103/physrevb.95.035422 ; Citation: & al., , , & (). Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett., 118(10). 106402. https://doi.org/10.1103/physrevlett.118.106402 ; Citation: & al., , , , & (). Spin transport and spin torque in antiferromagnetic devices. Nat. Phys., 14(3). 220–228. https://doi.org/10.1038/s41567-018-0062-7 ; Citation: & al., , , , , , , , , , & (). Strong orientation-dependent spin-orbit torque in thin films of the antiferromagnet Mn2Au. Phys. Rev. Applied, 9(5). 054028. https://doi.org/10.1103/physrevapplied.9.054028 ; Citation: & al., , , , , , , & (). Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys., 91(3). 035004. https://doi.org/10.1103/revmodphys.91.035004 ; Citation: & al., , , , & (). Spin-orbit-torque memory operation of synthetic antiferromagnets. Phys. Rev. Lett., 121(16). 167202. https://doi.org/10.1103/physrevlett.121.167202 ; Citation: & al., , , , & (). Manipulation of magnetization by spin-orbit torque. Adv. Quantum Technol., 2(1-2). 1800052. https://doi.org/10.1002/qute.201800052 ; Citation: & al., , , , , , , , , , , & (). Electric field control of néel spin–orbit torque in an antiferromagnet. Nat. Mater., 18(9). 931–935. https://doi.org/10.1038/s41563-019-0424-2 ; Citation: & al., , , , , , , , , & (). From fieldlike torque to antidamping torque in antiferromagnetic Mn2Au. Phys. Rev. Applied, 11(5). 054030. https://doi.org/10.1103/physrevapplied.11.054030 ; Citation: & al., , , , , , , , , , , , , , , , , & (). Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv., 5(5). eaau6696. https://doi.org/10.1126/sciadv.aau6696 ; Citation: & al., , , , , , , , , & (). Writing and reading antiferromagnetic Mn2Au by néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun., 9(1). 1–7. https://doi.org/10.1038/s41467-017-02780-x ). The Néel spin-orbit torque originates in a non-equilibrium staggered polarization of conduction electrons on AFM sublattices ( Citation: & al., , , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201 ; Citation: & al., , , & (). Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett., 118(10). 106402. https://doi.org/10.1103/physrevlett.118.106402 ; Citation: & al., , , , & (). Spin transport and spin torque in antiferromagnetic devices. Nat. Phys., 14(3). 220–228. https://doi.org/10.1038/s41567-018-0062-7 ; Citation: & al., , , , , , , & (). Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys., 91(3). 035004. https://doi.org/10.1103/revmodphys.91.035004 ). Characteristic magnitude of the non-equilibrium staggered polarization and its relevance for the experiments with CuMnAs and Mn$_2$Au remain, however, debated.

Bibliography

Fukami, Zhang, DuttaGupta, Kurenkov & Ohno (2016)
, , , & (). Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater., 15(5). 535–541. https://doi.org/10.1038/nmat4566
Hals & Brataas (2013)
& (). Phenomenology of current-induced spin-orbit torques. Phys. Rev. B, 88(8, 8). 085423. https://doi.org/10.1103/physrevb.88.085423
Jogschies, Klaas, Kruppe, Rittinger, Taptimthong, Wienecke, Rissing & Wurz (2015)
, , , , , , & (). Recent developments of magnetoresistive sensors for industrial applications. Sensors, 15(11). 28665–28689. https://doi.org/10.3390/s151128665
Lau, Betto, Rode, Coey & Stamenov (2016)
, , , & (). Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol., 11(9). 758–762. https://doi.org/10.1038/nnano.2016.84
Gibertini, Koperski, Morpurgo & Novoselov (2019)
, , & (). Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 14(5). 408–419. https://doi.org/10.1038/s41565-019-0438-6
Parkin, Jiang, Kaiser, Panchula, Roche & Samant (2003)
, , , , & (). Magnetically engineered spintronic sensors and memory. Proc. IEEE, 91(5). 661–680. https://doi.org/10.1109/jproc.2003.811807
Awschalom & Samarth (2009)
& (). Spintronics without magnetism. Physics, 2. 50. https://doi.org/10.1103/physics.2.50
Bader & Parkin (2010)
& (). Spintronics. Annu. Rev. Condens. Matter Phys., 1(1). 71–88. https://doi.org/10.1146/annurev-conmatphys-070909-104123
Baibich, Broto, Fert, Van Dau, Petroff, Etienne, Creuzet, Friederich & Chazelas (1988)
, , , , , , , & (). Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61(21). 2472–2475. https://doi.org/10.1103/physrevlett.61.2472
Baltz, Manchon, Tsoi, Moriyama, Ono & Tserkovnyak (2018)
, , , , & (). Antiferromagnetic spintronics. Rev. Mod. Phys., 90(1). 015005. https://doi.org/10.1103/revmodphys.90.015005
Barthem, Colin, Mayaffre, Julien & Givord (2013)
, , , & (). Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun., 4(1). 1–7. https://doi.org/10.1038/ncomms3892
Berger (1996)
(). Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54(13). 9353–9358. https://doi.org/10.1103/physrevb.54.9353
Bhattacharjee, Sapozhnik, Bodnar, Grigorev, Agustsson, Cao, Dominko, Obergfell, Gomonay, Sinova, Kläui, Elmers, Jourdan & Demsar (2018)
, , , , , , , , , , , , & (). Néel spin-orbit torque driven antiferromagnetic resonance in Mn2Au probed by time-domain THz spectroscopy. Phys. Rev. Lett., 120(23). 237201. https://doi.org/10.1103/physrevlett.120.237201
Bhatti, Sbiaa, Hirohata, Ohno, Fukami & Piramanayagam (2017)
, , , , & (). Spintronics based random access memory: A review. Mater. Today, 20(9). 530–548. https://doi.org/10.1016/j.mattod.2017.07.007
Binasch, Grünberg, Saurenbach & Zinn (1989)
, , & (). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39(7). 4828–4830. https://doi.org/10.1103/physrevb.39.4828
Bodnar, Šmejkal, Turek, Jungwirth, Gomonay, Sinova, Sapozhnik, Elmers, Kläui & Jourdan (2018)
, , , , , , , , & (). Writing and reading antiferromagnetic Mn2Au by néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun., 9(1). 1–7. https://doi.org/10.1038/s41467-017-02780-x
Wang, Chen & Khenata (2019)
, & (). Recent advances in novel materials for future spintronics (). MDPI. https://doi.org/10.3390/books978-3-03897-977-7
Brataas, Kent & Ohno (2012)
, & (). Current-induced torques in magnetic materials. Nat. Mater., 11(5). 372–381. https://doi.org/10.1038/nmat3311
Chen, Zhou, Cheng, Song, Zhang, Wu, Ba, Li, Sun, You, Zhao & Pan (2019)
, , , , , , , , , , & (). Electric field control of néel spin–orbit torque in an antiferromagnet. Nat. Mater., 18(9). 931–935. https://doi.org/10.1038/s41563-019-0424-2
Dyakonov & Perel (1971)
& (). Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A, 35(6). 459–460. https://doi.org/10.1016/0375-9601(71)90196-4
Fina & Marti (2016)
& (). Electric control of antiferromagnets. IEEE Trans. Magn., 53(2). 1–1. https://doi.org/10.1109/tmag.2016.2606561
Freimuth, Blügel & Mokrousov (2014)
, & (). Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B, 90(17). 174423. https://doi.org/10.1103/physrevb.90.174423
Garate & MacDonald (2009)
& (). Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B, 80(13). 134403. https://doi.org/10.1103/physrevb.80.134403
Ghosh & Manchon (2017)
& (). Spin-orbit torque in two-dimensional antiferromagnetic topological insulators. Phys. Rev. B, 95(3). 035422. https://doi.org/10.1103/physrevb.95.035422
Gomonay, Jungwirth & Sinova (2016)
, & (). High antiferromagnetic domain wall velocity induced by néel spin-orbit torques. Phys. Rev. Lett., 117(1). 017202. https://doi.org/10.1103/physrevlett.117.017202
Gomonay & Loktev (2014)
& (). Spintronics of antiferromagnetic systems (Review article). Low Temp. Phys., 40(1). 17–35. https://doi.org/10.1063/1.4862467
Haney, Lee, Lee, Manchon & Stiles (2013)
, , , & (). Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys. Rev. B, 87(17). 174411. https://doi.org/10.1103/physrevb.87.174411
Hellman, Hoffmann, Tserkovnyak, Beach, Fullerton, Leighton, MacDonald, Ralph, Arena, Dürr, Fischer, Grollier, Heremans, Jungwirth, Kimel, Koopmans, Krivorotov, May, Petford-Long, Rondinelli, Samarth, Schuller, Slavin, Stiles, Tchernyshyov, Thiaville & Zink (2017)
, , , , , , , , , , , , , , , , , , , , , , , , , & (). Interface-induced phenomena in magnetism. Rev. Mod. Phys., 89(2). 025006. https://doi.org/10.1103/revmodphys.89.025006
Jones (2018)
(). How to stop data centres from gobbling up the world’s electricity. Nature, 561(7722). 163–166. https://doi.org/10.1038/d41586-018-06610-y
Jourdan, Bräuning, Sapozhnik, Elmers, Zabel & Kläui (2015)
, , , , & (). Epitaxial Mn2Au thin films for antiferromagnetic spintronics. J. Phys. D: Appl. Phys., 48(38). 385001. https://doi.org/10.1088/0022-3727/48/38/385001
Jungfleisch, Zhang & Hoffmann (2018)
, & (). Perspectives of antiferromagnetic spintronics. Phys. Lett. A, 382(13). 865–871. https://doi.org/10.1016/j.physleta.2018.01.008
Jungwirth, Marti, Wadley & Wunderlich (2016)
, , & (). Antiferromagnetic spintronics. Nat. Nanotechnol., 11(3). 231–241. https://doi.org/10.1038/nnano.2016.18
Jungwirth, Sinova, Manchon, Marti, Wunderlich & Felser (2018)
, , , , & (). The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14(3). 200–203. https://doi.org/10.1038/s41567-018-0063-6
Kent & Worledge (2015)
& (). A new spin on magnetic memories. Nat. Nanotechnol., 10(3). 187–191. https://doi.org/10.1038/nnano.2015.24
Li, Edmonds, Liu, Zheng & Wang (2018)
, , , & (). Manipulation of magnetization by spin-orbit torque. Adv. Quantum Technol., 2(1-2). 1800052. https://doi.org/10.1002/qute.201800052
Liu, Bryan & Xu (2020)
, & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1
MacDonald & Tsoi (2011)
& (). Antiferromagnetic metal spintronics. Proc. R. Soc. A, 369(1948). 3098–3114. https://doi.org/10.1098/rsta.2011.0014
Manchon & Zhang (2009)
& (). Theory of spin torque due to spin-orbit coupling. Phys. Rev. B, 79(9). 094422. https://doi.org/10.1103/physrevb.79.094422
Manchon, Železný, Miron, Jungwirth, Sinova, Thiaville, Garello & Gambardella (2019)
, , , , , , & (). Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys., 91(3). 035004. https://doi.org/10.1103/revmodphys.91.035004
Manchon & Zhang (2008)
& (). Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B, 78(21). 212405. https://doi.org/10.1103/physrevb.78.212405
McClean (2020)
(). The McClean Report. https://www.icinsights.com/reports/mcclean-report/.
Mihai Miron, Gaudin, Auffret, Rodmacq, Schuhl, Pizzini, Vogel & Gambardella (2010)
, , , , , , & (). Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer. Nat. Mater., 9(3). 230–234. https://doi.org/10.1038/nmat2613
Moriyama, Zhou, Seki, Takanashi & Ono (2018)
, , , & (). Spin-orbit-torque memory operation of synthetic antiferromagnets. Phys. Rev. Lett., 121(16). 167202. https://doi.org/10.1103/physrevlett.121.167202
Olejník, Seifert, Kašpar, Novák, Wadley, Campion, Baumgartner, Gambardella, Němec, Wunderlich, Sinova, Kužel, Müller, Kampfrath & Jungwirth (2018)
, , , , , , , , , , , , , & (). Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv., 4(3). eaar3566. https://doi.org/10.1126/sciadv.aar3566
Pandey, Mahadevan & Sarma (2017)
, & (). Doping an antiferromagnetic insulator: A route to an antiferromagnetic metallic phase. EPL, 117(5). 57003. https://doi.org/10.1209/0295-5075/117/57003
Pu (2020)
(). Charge-spin conversion in 2D systems. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 125–136). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00004-7
Puebla, Kim, Kondou & Otani (2020)
, , & (). Spintronic devices for energy-efficient data storage and energy harvesting. Comms. Mater., 1(1). 1–9. https://doi.org/10.1038/s43246-020-0022-5
Ralph & Stiles (2008)
& (). Spin transfer torques. J. Magn. Magn. Mater., 320(7). 1190–1216. https://doi.org/10.1016/j.jmmm.2007.12.019
Saidl, Němec, Wadley, Hills, Campion, Novák, Edmonds, Maccherozzi, Dhesi, Gallagher, Trojánek, Kuneš, Železný, Malý & Jungwirth (2017)
, , , , , , , , , , , , , & (). Optical determination of the néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon., 11(2). 91–96. https://doi.org/10.1038/nphoton.2016.255
Sato, Xue, White, Bi & Wang (2018)
, , , & (). Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron., 1(9). 508–511. https://doi.org/10.1038/s41928-018-0131-z
Sinova & Žutić (2012)
& (). New moves of the spintronics tango. Nat. Mater., 11(5). 368–371. https://doi.org/10.1038/nmat3304
Slonczewski (1996)
(). Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater., 159(1-2). L1–L7. https://doi.org/10.1016/0304-8853(96)00062-5
Šmejkal, Železný, Sinova & Jungwirth (2017)
, , & (). Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett., 118(10). 106402. https://doi.org/10.1103/physrevlett.118.106402
Stiles & Zangwill (2002)
& (). Anatomy of spin-transfer torque. Phys. Rev. B, 66(1). 014407. https://doi.org/10.1103/physrevb.66.014407
Tshitoyan, Ciccarelli, Mihai, Ali, Irvine, Moore, Jungwirth & Ferguson (2015)
, , , , , , & (). Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B, 92(21). 214406. https://doi.org/10.1103/physrevb.92.214406
Wadley, Howells, elezny, Andrews, Hills, Campion, Novak, Olejnik, Maccherozzi, Dhesi, Martin, Wagner, Wunderlich, Freimuth, Mokrousov, Kune, Chauhan, Grzybowski, Rushforth, Edmonds, Gallagher & Jungwirth (2016)
, , , , , , , , , , , , , , , , , , , , & (). Electrical switching of an antiferromagnet. Science, 351(6273). 587–590. https://doi.org/10.1126/science.aab1031
Železný, Gao, Výborný, Zemen, Mašek, Manchon, Wunderlich, Sinova & Jungwirth (2014)
, , , , , , , & (). Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett., 113(15). 157201. https://doi.org/10.1103/physrevlett.113.157201
Železný, Wadley, Olejník, Hoffmann & Ohno (2018)
, , , & (). Spin transport and spin torque in antiferromagnetic devices. Nat. Phys., 14(3). 220–228. https://doi.org/10.1038/s41567-018-0062-7
Zhou, Chen, Zhang, Li, Shi, Sun, Saleem, You, Pan & Song (2019)
, , , , , , , , & (). From fieldlike torque to antidamping torque in antiferromagnetic Mn2Au. Phys. Rev. Applied, 11(5). 054030. https://doi.org/10.1103/physrevapplied.11.054030
Zhou, Wang, Liu, Yu, Fu, Liu, Chen, Deng, Lin, Shu, Yoong, Hong, Matsuda, Yang, Adams, Yan, Han & Chen (2019)
, , , , , , , , , , , , , , , , & (). Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv., 5(5). eaau6696. https://doi.org/10.1126/sciadv.aau6696
Zhou, Zhang, Li, Chen, Shi, Tan, Gu, Saleem, Wu, Pan & Song (2018)
, , , , , , , , , & (). Strong orientation-dependent spin-orbit torque in thin films of the antiferromagnet Mn2Au. Phys. Rev. Applied, 9(5). 054028. https://doi.org/10.1103/physrevapplied.9.054028