Magnetism in two-dimensional materials

In recent years a promising opportunity appeared that can push spintronic devices to a two-dimensional limit. Eliminating one dimension has the practical benefit of reducing the size and energy consumption of spintronic devices. Two-dimensional materials can in addition be tuned by gates and dopants. Two dimensional magnetism on the other hand has favorable properties such as larger magnetic domains, larger magnetic moment per atom and in general large directional magneto-crystalline anisotropy ( Citation: & al., , , , , , & (). Magnetism in two-dimensional materials beyond graphene. Mater. Today, 27. 107–122. https://doi.org/10.1016/j.mattod.2019.03.015 ; Citation: & al., , , & (). Van der Waals magnets: Wonder building blocks for two-dimensional spintronics?. InfoMat, 1(4). 479–495. https://doi.org/10.1002/inf2.12048 ).

It is important to stress that this anisotropy is important not because it is beneficial for storing magnetic data, but because without it the magnetic order (ferromagnetic or antiferromagnetic) cannot exist. This is an important consequence of the Mermin-Wagner theorem ( Citation: & al., & (). Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17(22). 1133–1136. https://doi.org/10.1103/physrevlett.17.1133 ), that states that in a truly isotropic two-dimensional system a long-range magnetic order (ferromagnetic or antiferromagnetic) cannot exist at any finite temperature: any, whatever small, thermal excitation gives rise to large magnonic fluctuations strong enough to destroy any magnetic ordering. A magneto-crystalline anisotropy however circumvents this theorem as it opens up a magnonic excitation gap, giving rise to finite Curie/Néel temperatures below which a ferromagnetic/antiferromagnetic ordering exists.

The first two-dimensional crystal, graphene ( Citation: , (). Graphene: Carbon in two dimensions. Mater. Today, 10(1-2). 20–27. https://doi.org/10.1016/s1369-7021(06)71788-6 ; Citation: & al., , & (). Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys., 6(1). 30–33. https://doi.org/10.1038/nphys1420 ; Citation: & al., & (). Graphene as a prototype crystalline membrane. Acc. Chem. Res., 46(1). 97–105. https://doi.org/10.1021/ar300117m ), was first discovered in 2004 ( Citation: , (). Electric field effect in atomically thin carbon films. Science, 306(5696). 666–669. https://doi.org/10.1126/science.1102896 ; Citation: & al., , , , , , , & (). Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065). 197–200. https://doi.org/10.1038/nature04233 ). A popular technique to produce a single layer of graphene is by exfoliating graphite. Here the different layers in graphite are held together by weak van-der-Waals forces. The same technique has led to the discovery of a multitude of new two-dimensional materials. Collectively, these materials are called van-der-Waals materials. These materials are often grouped in four distinct groups ( Citation: & al., , , , , , & (). Magnetism in two-dimensional materials beyond graphene. Mater. Today, 27. 107–122. https://doi.org/10.1016/j.mattod.2019.03.015 ; Citation: & al., & (). Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Three: Nanoscale Spintronics and Applications. CRC Press. ; Citation: & al., , & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1 ):

  1. graphene based
  2. 2D chalcogenides ( Citation: & al., , , , , , & (). Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys., 11(10). 830–834. https://doi.org/10.1038/nphys3419 ; Citation: & al., , , , , & (). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem, 5(4). 263–275. https://doi.org/10.1038/nchem.1589 ; Citation: & al., , , , & (). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7(11). 699–712. https://doi.org/10.1038/nnano.2012.193 ; Citation: & al., , , , , , , , , , , , , , , , & (). Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 12(1). 92–97. https://doi.org/10.1038/nphys3527 ; Citation: & al., , , , , , , , , , , , , , , & (). Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol., 9(2). 111–115. https://doi.org/10.1038/nnano.2013.277 ; Citation: & al., , , , , & (). Evidence of the existence of magnetism in pristine VX2 monolayers (X = s, se) and their strain-induced tunable magnetic properties. ACS Nano, 6(2). 1695–1701. https://doi.org/10.1021/nn204667z ; Citation: & al., , , , , , , , , , , , , , , , , , , , , & (). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4). 2898–2926. https://doi.org/10.1021/nn400280c ; Citation: & al., , , , & (). Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7(8). 490–493. https://doi.org/10.1038/nnano.2012.95 ; Citation: & al., , , , & (). Coupled spin and valley physics in monolayers ofMoS2and other group-VI dichalcogenides. Phys. Rev. Lett., 108(19). 196802. https://doi.org/10.1103/physrevlett.108.196802 ; Citation: & al., , , , & (). Atomically ThinMoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105(13). 136805. https://doi.org/10.1103/physrevlett.105.136805 ; Citation: & al., , , , & (). Single-layer MoS2 transistors. Nat. Nanotechnol., 6(3). 147–150. https://doi.org/10.1038/nnano.2010.279 )
  3. 2D halides ( Citation: & al., , , , , , , , , , , , , , , & (). Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater., 17(10). 908–914. https://doi.org/10.1038/s41563-018-0164-8 ; Citation: & al., , , , , , , , , , , , , & (). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255). 1518–1521. https://doi.org/10.1126/science.aac7660 ; Citation: & al., , , , & (). Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B, 88(20). 201402. https://doi.org/10.1103/physrevb.88.201402 ; Citation: & al., , , & (). Two-dimensional transition-metal halide CoBr3 with spin-polarized dirac cone. Phys. Chem. Chem. Phys., 21(32). 17740–17745. https://doi.org/10.1039/c9cp03337h ; Citation: & al., , , , , , , , , , , , & (). Uniaxial expansion of the 2D ruddlesden–popper perovskite family for improved environmental stability. J. Am. Chem. Soc., 141(13). 5518–5534. https://doi.org/10.1021/jacs.9b01327 )
  4. 2D oxides ( Citation: & al., , , , & (). Niobium oxide dihalides NbOX2: A new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horiz., 4(5). 1113–1123. https://doi.org/10.1039/c9nh00208a ; Citation: & al., , , , , & (). Electrolytic approach towards the controllable synthesis of NiO nanocrystalline and self-assembly mechanism of Ni(OH)2 precursor under electric, temperature and magnetic fields. CrystEngComm, 20(17). 2384–2395. https://doi.org/10.1039/c8ce00263k ; Citation: & al., & (). Ferrimagnetism and anisotropic phase tunability by magnetic fields in Na2Co2TeO6. Phys. Rev. B, 101(8). 085120. https://doi.org/10.1103/physrevb.101.085120 ; Citation: & al., , , , , , , , , , , , & (). Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater., 18(9). 970–976. https://doi.org/10.1038/s41563-019-0415-3 ; Citation: & al., , , , , & (). Two dimensional and layered transition metal oxides. Appl. Mater. Today, 5. 73–89. https://doi.org/10.1016/j.apmt.2016.09.012 ).

The first category consists of materials that are a derivative of graphene — such as fluorated graphene ( Citation: & al., , , & (). Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci., 3(7). 1500413. https://doi.org/10.1002/advs.201500413 ; Citation: & al., , , , , , , , , , , , , , , , , , & (). Fluorographene: A two-dimensional counterpart of Teflon. Small, 6(24). 2877–2884. https://doi.org/10.1002/smll.201001555 ) — and materials that have a similar hexagonal crystal structure – such as hexagonal boron nitride ( Citation: & al., , , , & (). Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C, 5(46). 11992–12022. https://doi.org/10.1039/c7tc04300g ). The group of 2D chalcogenides consists of crystals containing at least one chalgenide atom (e.g. S, Se, Te). A commonly studied subgroup are the transition metal dichalcogenides (TMDs), whose crystal formula is given by MX$_2$. Here M is a transition metal (e.g. Mo, W) and X is a chalcogenide. The third group, 2D halides, contain crystals following a similar formula as the TMDs, e.g. MX$_2$ and MX$_3$, but with X being a halogen (e.g. Cl, Br, I). The magnetic moments in most of these crystals are strongly located on the metal atoms in a honeycomb array ( Citation: & al., , , , , & (). Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B, 101(8). 085415. https://doi.org/10.1103/physrevb.101.085415 ). The last group of 2D oxides ranges from simple crystals (e.g. ZnO) to more complex (e.g. Na$_2$Co$_2$TeO$_6$). Some examples of crystals in the last three groups are presented in Table 1.

 Ferromagneticantiferromagnetic
(ii) 2D chalgenidesMoS$_2$, MoSe$_2$, VSe$_2$, MnSe$_2$, Fe$_3$GeTe$_2$, Cr$_2$Ge$_2$Te$_2$, Cr$_2$Si$_2$Te$_6$,CrGeTe$_3$FePS$_3$, FePSe$_3$, MnPS$_3$, MnPSe$_3$, NiPS$_3$, NiPSe$_3$, AgVP$_2$S$_6$, AgVP$_2$Se$_6$, CrSe$_2$, CrTe$_3$, CrSiTe$_3$
(iii) 2D halidesCrI$_3$ (single layer), CrBr$_3$, CoBr$_3$ GdI$_2$, K$_2$CuF$_4$CrI$_3$ (bi-layer), FeCl$_2$, CoCl$_2$, NiCl$_2$, VCl$_2$, CrCl$_3$, FeCl$_3$, FeBr$_2$, MnBr$_2$, CoBr$_2$, VBr$_2$, FeBr$_3$, FeI$_2$, VI$_2$, CrOCl, CrOBr, CrSBr
(iv) 2D oxidesZnO, MnO$_2$, $\delta$-FeOOHNa$_2$Co$_2$TeO$_6$, Ni(OH)$_2$
Table 1. Brief overview of various experimentally realized (anti)ferromagnetic van-der-Waals crystals ( Citation: & al., , , , , , & (). Magnetism in two-dimensional materials beyond graphene. Mater. Today, 27. 107–122. https://doi.org/10.1016/j.mattod.2019.03.015 ; Citation: & al., & (). Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Three: Nanoscale Spintronics and Applications. CRC Press. ; Citation: & al., , & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1 ). The group of graphene based materials are non-magnetic and not shown in this Table.

The groups of two-dimensional chalgonides and halides are currently a popular topic of investigation as they provide access to many physical properties not found in other two-dimensional materials. The electronic properties, e.g. bandgap, of these crystals are highly tunable to doping, strain, and chemical composition. Furthermore, a large variety of magnetic phases are also found among these materials (see Figure 1).

Figure 1. Four magnetic phases commonly found among van-der-Waals magnets.

Apart from the crystals in Table 1, there is also a large amount of two-dimensional crystals that are neither ferro- or antiferromagnetic. The possibility to induce (anti)ferromagnetism in such a crystal is attractive as it gives access to even a wider range of material parameters. In general one can undertake three ways:

  1. doping and defects ( Citation: & al., , , , , , , , , & (). Atomic-scale control of graphene magnetism by using hydrogen atoms. Science, 352(6284). 437–441. https://doi.org/10.1126/science.aad8038 ; Citation: , (). Perspectives for spintronics in 2D materials. APL Mater., 4(3). 032401. https://doi.org/10.1063/1.4941712 ; Citation: & al., , , & (). Missing atom as a source of carbon magnetism. Phys. Rev. Lett., 104(9). 096804. https://doi.org/10.1103/physrevlett.104.096804 ; Citation: & al., , , & (). Graphene spintronics. Nat. Nanotechnol., 9(10). 794–807. https://doi.org/10.1038/nnano.2014.214 ; Citation: & al., & (). Sp-electron magnetic clusters with a large spin in graphene. ACS Nano, 5(4). 2440–2446. https://doi.org/10.1021/nn103510c ; Citation: & al., , & (). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B, 77(3). 035427. https://doi.org/10.1103/physrevb.77.035427 ; Citation: & al., , , , , , , , , & (). Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat Commun, 4(1). 2010. https://doi.org/10.1038/ncomms3010 );
  2. magnetic proximity ( Citation: & al., , , , , , , , , & (). Atomic-scale control of graphene magnetism by using hydrogen atoms. Science, 352(6284). 437–441. https://doi.org/10.1126/science.aad8038 ; Citation: , (). Perspectives for spintronics in 2D materials. APL Mater., 4(3). 032401. https://doi.org/10.1063/1.4941712 ; Citation: & al., , , & (). Missing atom as a source of carbon magnetism. Phys. Rev. Lett., 104(9). 096804. https://doi.org/10.1103/physrevlett.104.096804 ; Citation: & al., , , & (). Graphene spintronics. Nat. Nanotechnol., 9(10). 794–807. https://doi.org/10.1038/nnano.2014.214 );
  3. strain engineering ( Citation: & al., , & (). Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano, 10(4). 4712–4718. https://doi.org/10.1021/acsnano.6b01149 ; Citation: & al., , , , , & (). Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B, 101(8). 085415. https://doi.org/10.1103/physrevb.101.085415 ).

The first is by chemically doping the crystal with $d$ or $f$ elements (e.g. Mn, Eu, Cr) or by introducing defects. For example, by doping GaAs with Mn atoms, exchange is introduced between local and delocalized spins giving rise to ferromagnetism ( Citation: & al., & (). Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys., 86(1). 187–251. https://doi.org/10.1103/revmodphys.86.187 ). Selectively introducing defects on only one sublattice in graphene can also induce weak ferromagnetism – a consequence of Lieb’s theorem ( Citation: , (). Two theorems on the Hubbard model. Phys. Rev. Lett., 62(16). 1927–1927. https://doi.org/10.1103/physrevlett.62.1927.5 ; Citation: , (). Two theorems on the Hubbard model. Phys. Rev. Lett., 62(10). 1201–1204. https://doi.org/10.1103/physrevlett.62.1201 ). The second approach is by bringing the crystal in vicinity with a (anti)ferromagnetic material. For example one can deposit graphene on top of an insulating ferromagnet such as YIG or EuS to create ferromagnetic graphene ( Citation: & al., , , , & (). Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys. Rev. Lett., 114(1). 016603. https://doi.org/10.1103/physrevlett.114.016603 ; Citation: & al., , , & (). Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater., 4(1). 014001. https://doi.org/10.1088/2053-1583/4/1/014001 ). The third approach makes use of the fact that electronic properties change by means of strain. A compressive strain of $\sim1\\%$ in FeSiS$_3$ is predicted ( Citation: & al., , , , , & (). Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B, 101(8). 085415. https://doi.org/10.1103/physrevb.101.085415 ) to transition it from a ferromagnetic ground state to a antiferromagnetic ground state.

Other properties such as spin-orbit coupling ( Citation: & al., , , & (). Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature, 539(7630). 509–517. https://doi.org/10.1038/nature19820 ; Citation: & al., , , & (). Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett., 106(3). 036601. https://doi.org/10.1103/physrevlett.106.036601 ) and magnetocrystalline anisotropy ( Citation: & al., , , & (). Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature, 539(7630). 509–517. https://doi.org/10.1038/nature19820 ; Citation: & al., & (). Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys., 89(2). 025008. https://doi.org/10.1103/revmodphys.89.025008 ) can be tuned or induced as well by placing a magnetic layer on top of a heavy metal layer such as Pt, Ta or W ( Citation: & al., , , , , , , , , , , , , , , , , , , , , , , , , , & (). Interface-induced phenomena in magnetism. Rev. Mod. Phys., 89(2). 025006. https://doi.org/10.1103/revmodphys.89.025006 ). As an example, recently strong current induced spin-orbit torques were measured in a bilayer consisting of Fe$_3$GeTe$_2$ and Pt ( Citation: & al., , , , , , , , , , , , , , , , , , , , , , , , , , , & (). Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv., 5(8). eaaw8904. https://doi.org/10.1126/sciadv.aaw8904 ).

Dirac ferro- and antiferromagnets

In my PhD Thesis I investigated the role of conducting electrons in assisting in the manipulation and relaxation of magnetic moments in ferro- and antiferromagnets. Specifically, we study two-dimensional ferro- and antiferromagnets where the conducting electrons have a linear energy dispersion. Such electrons are called Dirac fermions and the system as a whole is referred to as either a Dirac ferro- or antiferromagnet.

Dirac fermions were first found in graphene ( Citation: , (). Electric field effect in atomically thin carbon films. Science, 306(5696). 666–669. https://doi.org/10.1126/science.1102896 ; Citation: & al., , , , , , & (). Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A., 102(30). 10451–10453. https://doi.org/10.1073/pnas.0502848102 ; Citation: & al., , , , , , , & (). Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065). 197–200. https://doi.org/10.1038/nature04233 ) and soon after in topological insulators ( Citation: & al., & (). Colloquium: Topological insulators. Rev. Mod. Phys., 82(4). 3045–3067. https://doi.org/10.1103/revmodphys.82.3045 ; Citation: & al., , , , , , & (). The quantum spin hall effect: Theory and experiment. J. Phys. Soc. Jpn., 77(3). 031007. https://doi.org/10.1143/jpsj.77.031007 ; Citation: & al., & (). The quantum spin hall effect and topological insulators. Phys. Today, 63(1). 33–38. https://doi.org/10.1063/1.3293411 ; Citation: , (). Introduction to dirac materials and topological insulators. C. R. Phys., 14(9-10). 760–778. https://doi.org/10.1016/j.crhy.2013.09.012 ). The Dirac ferromagnet that I studied in ( Citation: & al., , , , & (). Spin-torque resonance due to diffusive dynamics at the surface of a topological insulator. Physical Review B, 99(21). 214444. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214444 ) is inspired by a bilayer consisting of a topological insulator and a ferromagnetic insulator. The model can be directly used to describe for example a bilayer consisting of Bi$_2$Te$_3$ or Bi$_2$Se$_3$ and YIG or EuS.

In my PhD work a particular antiferromagnet is studied on a honeycomb lattice. Although most of the antiferromagnets presented in Table 1 have a honeycomb lattice, the majority are unfortunately non-metallic, or are not in the Néel antiferromagnetic phase (illustrated in Figure 1b). Recent DFT calculations ( Citation: & al., , , , , & (). Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B, 101(8). 085415. https://doi.org/10.1103/physrevb.101.085415 ) predict however a metallic Néel antiferromagnetic phase for the following monolayer transition metal trichalgenides: FeSiSe$_3$, FeSiTe$_3$, VGeTe$_3$, MnGeS$_3$, FeGeSe$_3$, FeGeTe$_3$, NiGeSe$_3$, MnSnS$_3$, MnSnS$_3$, MnSnSe$_3$, FeSnSe$_3$, NiSnS$_3$. Experimental realizations of one of these materials could serve as a testing place for our model.

Furthermore, not every hexagonal metallic Néel antiferromagnet can accurately be described with a simple Dirac Hamiltonian. The closest experimentally realized material would be CuMnAs that has a square lattice, but can host Dirac electrons. The results from my PhD work ( Citation: & al., , , , , , & (). Giant anisotropy of gilbert damping in a rashba honeycomb antiferromagnet. Physical Review B, 101(10). 104403. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.104403 ; Citation: & al., , , , & (). Spin-orbit torques in a rashba honeycomb antiferromagnet. Physical Review B, 100(21). 214403. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.214403 ; Citation: , (). Spintronics in two-dimensional conducting dirac ferro-and antiferromagnets  (PhD thesis). [Sl: sn] Retrieved from https://repository.ubn.ru.nl/bitstream/handle/2066/225934/225934.pdf ) can at least qualitatively describe the current induced phenomena found in CuMnAs.

Other Dirac antiferromagnets exist as well (e.g. TaCoTe$_2$ ( Citation: , (). Antiferromagnetic dirac semimetals in two dimensions. Phys. Rev. B, 95(11). 115138. https://doi.org/10.1103/physrevb.95.115138 ), Zr$_2$Si ( Citation: & al., , , , & (). Zr2Si: An antiferromagnetic dirac MXene. Phys. Chem. Chem. Phys., 20(6). 3946–3952. https://doi.org/10.1039/c7cp08108a ) , BaFe$_2$As$_2$ and SrFe$_2$As$_2$ ( Citation: & al., , , , , , , , , & (). Two-dimensional massless dirac fermions in antiferromagnetic AFe2As2 (A=Ba,Sr). Phys. Rev. Lett., 119(9). 096401. https://doi.org/10.1103/physrevlett.119.096401 ), EuCd$_2$As$_2$ ( Citation: & al., , , , , , , , , , , , , , , , , , , & (). Emergence of nontrivial low-energy dirac fermions in antiferromagnetic EuCd 2 as 2. Adv. Mater., 32(14). 1907565. https://doi.org/10.1002/adma.201907565 ), MnBi$_2$Te$_4$ ( Citation: & al., , , , , , & (). Gapless dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 101(16). 161109. https://doi.org/10.1103/physrevb.101.161109 )), but they suffer from symmetry protected gapless states and low exchange energies between localized and conducting electrons. As such, they are unideal when it comes to manipulating the antiferromagnetic order.

The ideal Dirac antiferromagnet would be an antiferromagnetic version of graphene. Though currently non-existent, it has recently been predicted that antiferromagnetism can be induced in graphene by bringing it in proximity with MnPSe$_3$ ( Citation: & al., , , , , & (). Quantum anomalous hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling. Phys. Rev. Lett., 124(13). 136403. https://doi.org/10.1103/physrevlett.124.136403 ) or by bringing it in double proximity between a layer of Cr$_2$Ge$_2$Te$_6$ and WS$_2$ ( Citation: & al., , , , , & (). Proximity spin–orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett., 20(4). 2288–2295. https://doi.org/10.1021/acs.nanolett.9b04556 ).

Bibliography

Jia, Zhao, Gou, Zeng & Li (2019)
, , , & (). Niobium oxide dihalides NbOX2: A new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horiz., 4(5). 1113–1123. https://doi.org/10.1039/c9nh00208a
Baglai, Sokolewicz, Pervishko, Katsnelson, Eriksson, Yudin & Titov (2020)
, , , , , & (). Giant anisotropy of gilbert damping in a rashba honeycomb antiferromagnet. Physical Review B, 101(10). 104403. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.104403
Boukhvalov, Katsnelson & Lichtenstein (2008)
, & (). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B, 77(3). 035427. https://doi.org/10.1103/physrevb.77.035427
Boukhvalov & Katsnelson (2011)
& (). Sp-electron magnetic clusters with a large spin in graphene. ACS Nano, 5(4). 2440–2446. https://doi.org/10.1021/nn103510c
Butler, Hollen, Cao, Cui, Gupta, Gutiérrez, Heinz, Hong, Huang, Ismach, Johnston-Halperin, Kuno, Plashnitsa, Robinson, Ruoff, Salahuddin, Shan, Shi, Spencer, Terrones, Windl & Goldberger (2013)
, , , , , , , , , , , , , , , , , , , , & (). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4). 2898–2926. https://doi.org/10.1021/nn400280c
Cayssol (2013)
(). Introduction to dirac materials and topological insulators. C. R. Phys., 14(9-10). 760–778. https://doi.org/10.1016/j.crhy.2013.09.012
Chen, Wang, Song, Lu, Luo, Zhang, Dai, Yin, Haule & Kotliar (2017)
, , , , , , , , & (). Two-dimensional massless dirac fermions in antiferromagnetic AFe2As2 (A=Ba,Sr). Phys. Rev. Lett., 119(9). 096401. https://doi.org/10.1103/physrevlett.119.096401
Chhowalla, Shin, Eda, Li, Loh & Zhang (2013)
, , , , & (). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem, 5(4). 263–275. https://doi.org/10.1038/nchem.1589
Chittari, Lee, Banerjee, MacDonald, Hwang & Jung (2020)
, , , , & (). Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B, 101(8). 085415. https://doi.org/10.1103/physrevb.101.085415
Dieny & Chshiev (2017)
& (). Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys., 89(2). 025008. https://doi.org/10.1103/revmodphys.89.025008
Dietl & Ohno (2014)
& (). Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys., 86(1). 187–251. https://doi.org/10.1103/revmodphys.86.187
Dou, Wong, Yu, Lai, Kornienko, Eaton, Fu, Bischak, Ma, Ding, Ginsberg, Wang, Alivisatos & Yang (2015)
, , , , , , , , , , , , & (). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255). 1518–1521. https://doi.org/10.1126/science.aac7660
Feng, Long, Feng & Li (2016)
, , & (). Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci., 3(7). 1500413. https://doi.org/10.1002/advs.201500413
Gonzalez-Herrero, Gomez-Rodriguez, Mallet, Moaied, Palacios, Salgado, Ugeda, Veuillen, Yndurain & Brihuega (2016)
, , , , , , , , & (). Atomic-scale control of graphene magnetism by using hydrogen atoms. Science, 352(6284). 437–441. https://doi.org/10.1126/science.aad8038
Guinea, Katsnelson & Geim (2009)
, & (). Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys., 6(1). 30–33. https://doi.org/10.1038/nphys1420
Han, Kawakami, Gmitra & Fabian (2014)
, , & (). Graphene spintronics. Nat. Nanotechnol., 9(10). 794–807. https://doi.org/10.1038/nnano.2014.214
Han (2016)
(). Perspectives for spintronics in 2D materials. APL Mater., 4(3). 032401. https://doi.org/10.1063/1.4941712
Hasan & Kane (2010)
& (). Colloquium: Topological insulators. Rev. Mod. Phys., 82(4). 3045–3067. https://doi.org/10.1103/revmodphys.82.3045
Hellman, Hoffmann, Tserkovnyak, Beach, Fullerton, Leighton, MacDonald, Ralph, Arena, Dürr, Fischer, Grollier, Heremans, Jungwirth, Kimel, Koopmans, Krivorotov, May, Petford-Long, Rondinelli, Samarth, Schuller, Slavin, Stiles, Tchernyshyov, Thiaville & Zink (2017)
, , , , , , , , , , , , , , , , , , , , , , , , , & (). Interface-induced phenomena in magnetism. Rev. Mod. Phys., 89(2). 025006. https://doi.org/10.1103/revmodphys.89.025006
Högl, Frank, Zollner, Kochan, Gmitra & Fabian (2020)
, , , , & (). Quantum anomalous hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling. Phys. Rev. Lett., 124(13). 136403. https://doi.org/10.1103/physrevlett.124.136403
Kalantar-zadeh, Ou, Daeneke, Mitchell, Sasaki & Fuhrer (2016)
, , , , & (). Two dimensional and layered transition metal oxides. Appl. Mater. Today, 5. 73–89. https://doi.org/10.1016/j.apmt.2016.09.012
Katsnelson (2007)
(). Graphene: Carbon in two dimensions. Mater. Today, 10(1-2). 20–27. https://doi.org/10.1016/s1369-7021(06)71788-6
Katsnelson & Fasolino (2012)
& (). Graphene as a prototype crystalline membrane. Acc. Chem. Res., 46(1). 97–105. https://doi.org/10.1021/ar300117m
König, Buhmann, W. Molenkamp, Hughes, Liu, Qi & Zhang (2008)
, , , , , & (). The quantum spin hall effect: Theory and experiment. J. Phys. Soc. Jpn., 77(3). 031007. https://doi.org/10.1143/jpsj.77.031007
Leng, Abdelwahab, Verzhbitskiy, Telychko, Chu, Fu, Chi, Guo, Chen, Chen, Zhang, Xu, Lu, Chhowalla, Eda & Loh (2018)
, , , , , , , , , , , , , , & (). Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater., 17(10). 908–914. https://doi.org/10.1038/s41563-018-0164-8
Leutenantsmeyer, Kaverzin, Wojtaszek & Wees (2016)
, , & (). Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater., 4(1). 014001. https://doi.org/10.1088/2053-1583/4/1/014001
Lieb (1989)
(). Two theorems on the Hubbard model. Phys. Rev. Lett., 62(16). 1927–1927. https://doi.org/10.1103/physrevlett.62.1927.5
Lieb (1989)
(). Two theorems on the Hubbard model. Phys. Rev. Lett., 62(10). 1201–1204. https://doi.org/10.1103/physrevlett.62.1201
Liu, Bryan & Xu (2020)
, & (). Introduction to spintronics and 2D materials. InLiu, W. & Xu, Y. (Eds.), Spintronic 2D materials. (pp. 1–24). Elsevier. https://doi.org/10.1016/b978-0-08-102154-5.00001-1
Liu, Moriyama, Ralph & Buhrman (2011)
, , & (). Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett., 106(3). 036601. https://doi.org/10.1103/physrevlett.106.036601
Ma, Wang, Nie, Yi, Xu, Li, Jandke, Wulfhekel, Huang, West, Richard, Chikina, Strocov, Mesot, Weng, Zhang, Shi, Qian, Shi & Ding (2020)
, , , , , , , , , , , , , , , , , , & (). Emergence of nontrivial low-energy dirac fermions in antiferromagnetic EuCd 2 as 2. Adv. Mater., 32(14). 1907565. https://doi.org/10.1002/adma.201907565
Ma, Dai, Guo, Niu, Zhu & Huang (2012)
, , , , & (). Evidence of the existence of magnetism in pristine VX2 monolayers (X = s, se) and their strain-induced tunable magnetic properties. ACS Nano, 6(2). 1695–1701. https://doi.org/10.1021/nn204667z
Mak, Lee, Hone, Shan & Heinz (2010)
, , , & (). Atomically ThinMoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105(13). 136805. https://doi.org/10.1103/physrevlett.105.136805
Mermin & Wagner (1966)
& (). Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17(22). 1133–1136. https://doi.org/10.1103/physrevlett.17.1133
Nair, Tsai, Sepioni, Lehtinen, Keinonen, Krasheninnikov, Castro Neto, Katsnelson, Geim & Grigorieva (2013)
, , , , , , , , & (). Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat Commun, 4(1). 2010. https://doi.org/10.1038/ncomms3010
Nair, Ren, Jalil, Riaz, Kravets, Britnell, Blake, Schedin, Mayorov, Yuan, Katsnelson, Cheng, Strupinski, Bulusheva, Okotrub, Grigorieva, Grigorenko, Novoselov & Geim (2010)
, , , , , , , , , , , , , , , , , & (). Fluorographene: A two-dimensional counterpart of Teflon. Small, 6(24). 2877–2884. https://doi.org/10.1002/smll.201001555
Novoselov (2004)
(). Electric field effect in atomically thin carbon films. Science, 306(5696). 666–669. https://doi.org/10.1126/science.1102896
Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos & Firsov (2005)
, , , , , , & (). Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065). 197–200. https://doi.org/10.1038/nature04233
Novoselov, Jiang, Schedin, Booth, Khotkevich, Morozov & Geim (2005)
, , , , , & (). Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A., 102(30). 10451–10453. https://doi.org/10.1073/pnas.0502848102
Qi & Zhang (2010)
& (). The quantum spin hall effect and topological insulators. Phys. Today, 63(1). 33–38. https://doi.org/10.1063/1.3293411
Radisavljevic, Radenovic, Brivio, Giacometti & Kis (2011)
, , , & (). Single-layer MoS2 transistors. Nat. Nanotechnol., 6(3). 147–150. https://doi.org/10.1038/nnano.2010.279
Sachs, Wehling, Novoselov, Lichtenstein & Katsnelson (2013)
, , , & (). Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B, 88(20). 201402. https://doi.org/10.1103/physrevb.88.201402
Sethulakshmi, Mishra, Ajayan, Kawazoe, Roy, Singh & Tiwary (2019)
, , , , , & (). Magnetism in two-dimensional materials beyond graphene. Mater. Today, 27. 107–122. https://doi.org/10.1016/j.mattod.2019.03.015
Shao, Liu, Zhang, Wang & Zhao (2018)
, , , & (). Zr2Si: An antiferromagnetic dirac MXene. Phys. Chem. Chem. Phys., 20(6). 3946–3952. https://doi.org/10.1039/c7cp08108a
Shen, Penumatcha & Appenzeller (2016)
, & (). Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano, 10(4). 4712–4718. https://doi.org/10.1021/acsnano.6b01149
Sokolewicz, Ghosh, Yudin, Manchon & Titov (2019)
, , , & (). Spin-orbit torques in a rashba honeycomb antiferromagnet. Physical Review B, 100(21). 214403. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.214403
Sokolewicz, Ado, Katsnelson, Ostrovsky & Titov (2019)
, , , & (). Spin-torque resonance due to diffusive dynamics at the surface of a topological insulator. Physical Review B, 99(21). 214444. Retrieved from https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.214444
Sokolewicz (2020)
(). Spintronics in two-dimensional conducting dirac ferro-and antiferromagnets  (PhD thesis). [Sl: sn] Retrieved from https://repository.ubn.ru.nl/bitstream/handle/2066/225934/225934.pdf
Soumyanarayanan, Reyren, Fert & Panagopoulos (2016)
, , & (). Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature, 539(7630). 509–517. https://doi.org/10.1038/nature19820
Spanopoulos, Hadar, Ke, Tu, Chen, Tsai, He, Shekhawat, Dravid, Wasielewski, Mohite, Stoumpos & Kanatzidis (2019)
, , , , , , , , , , , & (). Uniaxial expansion of the 2D ruddlesden–popper perovskite family for improved environmental stability. J. Am. Chem. Soc., 141(13). 5518–5534. https://doi.org/10.1021/jacs.9b01327
Swatek, Wu, Wang, Lee, Schrunk, Yan & Kaminski (2020)
, , , , , & (). Gapless dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 101(16). 161109. https://doi.org/10.1103/physrevb.101.161109
Tsymbal & Žutić (2019)
& (). Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Three: Nanoscale Spintronics and Applications. CRC Press.
Ugeda, Bradley, Zhang, Onishi, Chen, Ruan, Ojeda-Aristizabal, Ryu, Edmonds, Tsai, Riss, Mo, Lee, Zettl, Hussain, Shen & Crommie (2015)
, , , , , , , , , , , , , , , & (). Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 12(1). 92–97. https://doi.org/10.1038/nphys3527
Ugeda, Brihuega, Guinea & Gómez-Rodríguez (2010)
, , & (). Missing atom as a source of carbon magnetism. Phys. Rev. Lett., 104(9). 096804. https://doi.org/10.1103/physrevlett.104.096804
Wang (2017)
(). Antiferromagnetic dirac semimetals in two dimensions. Phys. Rev. B, 95(11). 115138. https://doi.org/10.1103/physrevb.95.115138
Wang, Tang, Xia, He, Zhang, Liu, Wan, Fang, Guo, Yang, Guang, Zhang, Xu, Wei, Liao, Lu, Feng, Li, Peng, Wei, Yang, Shi, Zhang, Han, Zhang, Zhang, Yu & Han (2019)
, , , , , , , , , , , , , , , , , , , , , , , , , , & (). Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv., 5(8). eaaw8904. https://doi.org/10.1126/sciadv.aaw8904
Wang, Zhou, He, Wangyang, Lu & Gu (2018)
, , , , & (). Electrolytic approach towards the controllable synthesis of NiO nanocrystalline and self-assembly mechanism of Ni(OH)2 precursor under electric, temperature and magnetic fields. CrystEngComm, 20(17). 2384–2395. https://doi.org/10.1039/c8ce00263k
Wang, Kalantar-Zadeh, Kis, Coleman & Strano (2012)
, , , & (). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7(11). 699–712. https://doi.org/10.1038/nnano.2012.193
Wang, Tang, Sachs, Barlas & Shi (2015)
, , , & (). Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys. Rev. Lett., 114(1). 016603. https://doi.org/10.1103/physrevlett.114.016603
Xiao, Liu, Feng, Xu & Yao (2012)
, , , & (). Coupled spin and valley physics in monolayers ofMoS2and other group-VI dichalcogenides. Phys. Rev. Lett., 108(19). 196802. https://doi.org/10.1103/physrevlett.108.196802
Yang, Zeng, Kang, Betzler, Czarnik, Zhang, Ophus, Yu, Bustillo, Pan, Qiu, Wang & Zheng (2019)
, , , , , , , , , , , & (). Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater., 18(9). 970–976. https://doi.org/10.1038/s41563-019-0415-3
Yang, Sinitsyn, Chen, Yuan, Zhang, Lou & Crooker (2015)
, , , , , & (). Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys., 11(10). 830–834. https://doi.org/10.1038/nphys3419
Yao & Li (2020)
& (). Ferrimagnetism and anisotropic phase tunability by magnetic fields in Na2Co2TeO6. Phys. Rev. B, 101(8). 085120. https://doi.org/10.1103/physrevb.101.085120
Zeng, Dai, Yao, Xiao & Cui (2012)
, , , & (). Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7(8). 490–493. https://doi.org/10.1038/nnano.2012.95
Zhang, Chang, Zhou, Cui, Yan, Liu, Schmitt, Lee, Moore, Chen, Lin, Jeng, Mo, Hussain, Bansil & Shen (2013)
, , , , , , , , , , , , , , & (). Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol., 9(2). 111–115. https://doi.org/10.1038/nnano.2013.277
Zhang, Li, Jin & She (2019)
, , & (). Two-dimensional transition-metal halide CoBr3 with spin-polarized dirac cone. Phys. Chem. Chem. Phys., 21(32). 17740–17745. https://doi.org/10.1039/c9cp03337h
Zhang, Feng, Wang, Yang & Wang (2017)
, , , & (). Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C, 5(46). 11992–12022. https://doi.org/10.1039/c7tc04300g
Zhang, Wong, Zhu & Wee (2019)
, , & (). Van der Waals magnets: Wonder building blocks for two-dimensional spintronics?. InfoMat, 1(4). 479–495. https://doi.org/10.1002/inf2.12048
Dolui, Petrović, Zollner, Plecháč, Fabian & Nikolić (2020)
, , , , & (). Proximity spin–orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett., 20(4). 2288–2295. https://doi.org/10.1021/acs.nanolett.9b04556